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Abstract

Real enclosures have diffusive walls. A procedure is developed to evaluate the natural convection effective global

Nusselt number for rectangular enclosures with vertical diffusive walls. The effective Nusselt number is evaluated using

the temperature difference imposed over the exterior faces of the enclosure, the usual correlations for rectangular en-

closures without diffusive walls, and the diffusive properties of the solid vertical walls, which are concentrated on a single

dimensionless parameter. The proposed procedure is tested by comparing the obtained results with those achieved from

the complete two-dimensional numerical simulation of the conjugated heat transfer problem occurring in the complete

enclosure, with diffusive walls. The result is a helpful tool that promptly helps the thermal engineer when dealing with

enclosures with diffusive walls. � 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Laminar natural convection in differentially heated

rectangular enclosures is one of the most extensively

studied problems in numerical and experimental terms

[1–4]. There are well-established correlations available to

evaluate the Nusselt number corresponding to such en-

closures [1,3], as well as bench-mark numerical solutions

for this problem [2]. However, the usual situations an-

alyzed refer to rectangular enclosures without vertical

diffusive walls, with imposed uniform temperatures at

the vertical surfaces, and with perfectly insulated upper

and lower walls.

It is well known that such enclosures do not appear in

real case scenarios. A closest situation to reality is the

enclosure with diffusive vertical walls and adiabatic

upper and lower walls. The analysis of the natural

convection problem in rectangular enclosures with dif-

fusive walls has been object of previous work [5–13], but

further work is required in what concerns design and

development. At present, there is no work that promptly

helps the thermal engineer when dealing with such real

enclosures. It is expected, from an engineering point of

view, the evaluation of the effective Nusselt number for

enclosures with diffusive walls, in a way similar to that

followed when dealing with enclosures without diffusive

walls (or with walls of very high thermal diffusivities).

This work aims to develop and test a procedure to

promptly help the thermal engineer when evaluating the

effective Nusselt number corresponding to rectangular

enclosures with diffusive vertical walls. In fact, the latter

is believed to incorporate conditions enabling a better

description of the real enclosures. Once known the im-

posed temperatures at the exterior faces of the complete

enclosure with diffusive walls, and the usual correlations

for the global Nusselt number in rectangular enclosures

without diffusive walls, one can obtain a global Nusselt

number that is not the effective global Nusselt number.

The thermal properties of the diffusive walls can be

concentrated on a single dimensionless parameter, the

explained procedure acting like a correction over the so-

obtained global Nusselt number in order to obtain the

effective global Nusselt number.

The developed procedure is based on a one-dimen-

sional (1D) approach, which is only a simplified model

of the two-dimensional (2D) problem. In order to assess

the validity of such methodology, the results obtained

with the 1D approach are extensively compared with the
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2D ones, obtained from the complete numerical simu-

lation of the conjugated heat transfer problem taking

place in the complete enclosure with diffusive walls. The

results obtained clearly highlight the validity of the

proposed procedure to evaluate the effective Nusselt

number. Nevertheless, special conditions that may lead

to deviations are pointed and discussed.

2. Physical model and assumptions

The situation under consideration is presented in Fig.

1, where the vertical walls of thickness B are heat dif-

fusive, with thermal conductivity ks. The hot and cold

temperatures are imposed over the extreme dimensions

of the enclosure, i.e. over the external surfaces of the

diffusive lateral walls of the enclosure. It will be assumed

that the hot wall is the left one, with a temperature T1,

and that the cold wall is the right wall, with a temper-

ature T4. The upper and lower walls are assumed to be

perfectly insulated.

The enclosure is filled with a Newton–Fourier fluid,

which is incompressible but expands or contracts with

temperature changes. This assumption leads to the use of

the Boussinesq approximation in the vertical momentum

source term, if the maximum temperature difference (in

the fluid) is maintained low [1]. It is assumed that the hot

and cold thermal levels are small and similar enough in

order to neglect the thermal radiation transfer between

the interior faces of the enclosure, and that the fluid

is radiatively non-participating. The energy generation

term due to viscous dissipation, and the change of tem-

perature due to reversible deformation (work of pressure

forces) are neglected. All the thermophysical properties

of the involved media are assumed to be constant, ex-

ception made to the density appearing in the buoyancy

term, which is treated as varying linearly with tempera-

ture. It is assumed that the flow field within the enclosure

occurs only in the laminar regime, implying an enclosure

Rayleigh number lower than �108 [1].

Temperatures T2 and T3 are assumed to be nearly

constant, i.e. it is assumed that the heat flow is 1D

through the solid walls. This assumption will be dis-

cussed further.

3. One-dimensional model

3.1. Modeling

The actually recommended correlation for the lami-

nar natural convection global Nusselt number of rect-

Nomenclature

B wall thickness

C constant (in the correlation)

F dimensionless factor

g gravitational acceleration

H height

k thermal conductivity

L horizontal length

Nu average Nusselt number

n1, n2 constants (in the correlation)

p pressure

Pr Prandtl number
_QQ0 heat flow, by unit depth

Ra Rayleigh number

T temperature

u, v Cartesian velocity components

x, y Cartesian co-ordinates

Greek symbols

a thermal diffusivity

b volumetric expansion coefficient

m kinematic viscosity

q density

Subscripts

f fluid medium

H based on the H height

s solid medium

y at the level y

1,2,3,4 vertical surfaces

* dimensionless

Superscript

0 based on the T1 � T4 temperature difference

Fig. 1. Physical model and geometry.
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angular enclosures, with an aspect ratio near unit, is that

proposed by Berkovsky and Polevikov [1,3] which is

NuH ¼ C
Pr

0:2 þ Pr
RaH

� �n1 L
H

� �n2

ð1Þ

when the Rayleigh number is based on height H. The

involved constants and applicability conditions of this

correlation are given in Table 1. In the present case,

constant C (in the second row of Table 1) was slightly

modified ðC ¼ 0:17Þ in order to obtain a better corre-

lation for Nusselt numbers achieved using the complete

2D model. In fact, correlation (1) with C ¼ 0:18 gives

Nusselt numbers somewhat high even when compared

with the ones taken from the bench-mark numerical

solution [2].

Once known the temperatures imposed at the exte-

rior faces of the complete enclosure, it can be evaluated

the and H based Rayleigh number

Ra0
H ¼ gb T1 � T4ð ÞH 3

ma
ð2Þ

From correlation (1) it can be obtained the global

Nusselt number Nu
0

H , using the Ra0
H Rayleigh number.

The heat transferred through the enclosure without

diffusive walls is thus _QQ00 ¼ kfH T1 � T4ð Þ=L½ 	Nu0

H . How-

ever, the effective temperature difference felt by the fluid

within the enclosure is not T1 � T4 but T2 � T3, assuming

that T2 and T3 are nearly constant. Therefore, the T2 � T3

and H based effective Rayleigh number can be obtained

as RaH ¼ gb T2 � T3ð ÞH 3= mað Þ. In this case, the effective

heat transferred through the enclosure with diffusive

walls is _QQ0 ¼ kfH T2 � T3ð Þ=L½ 	NuH . From correlation (1)

it can be also obtained the effective global Nusselt

number, NuH , using the effective Rayleigh number, RaH .

If the applicability conditions and the used correla-

tion are kept unchanged for both Nu
0

H and NuH , it can

be obtained that

NuH

Nu
0

H

¼ RaH
Ra0

H

� �n1

ð3Þ

Once known the ratio RaH=Ra0
H , the global effective

Nusselt number NuH can be evaluated, since the global

Nusselt number Nu
0

H is readily known from Eqs. (1) and

(2). However, it remains to be evaluated the temperature

difference T2 � T3.

Attempting on Fig. 1, from the 1D approach, it can

be obtained that

_QQ0 ¼ ksH
T1 � T2

B
) T1 � T2 ¼ _QQ0 B

ksH
ð4aÞ

_QQ0 ¼ kfH
T2 � T3

L
NuH ) T2 � T3 ¼ _QQ0 L

kfH
1

NuH
ð4bÞ

_QQ0 ¼ ksH
T3 � T4

B
) T3 � T4 ¼ _QQ0 B

ksH
ð4cÞ

results that can be added and arranged to give

_QQ0 ¼ kfH
T1 � T4

L
NuH

FNuH þ 1
ð5Þ

where

F � 2
B
L
kf

ks

ð6Þ

F is therefore a dimensionless parameter concentrating

the diffusive properties of the vertical diffusive walls.

This factor can be interpreted as F � ð2B=ksÞ=ðL=kfÞ, i.e.

the ratio between the diffusive resistances of the solid

walls and of the enclosure filling fluid.

The global Nusselt number for enclosures is defined

as the ratio of the global heat flow effectively transferred

due to convection and the global heat flow transferred

by pure conduction only through the stagnant fluid. This

definition of the Nusselt number is present in Eq. (4b).

In the present case, the natural convection problem lies

in the definition of the temperature difference between

the interior faces of the enclosure, which is the maximum

temperature difference experienced by the fluid.

The effective temperature difference T2 � T3 experi-

enced by the enclosure filling fluid is obtained from

Eqs. (4b) and (5) as

T2 � T3

T1 � T4

¼ T2� � T3� ¼
RaH
Ra0

H

¼ 1

FNuH þ 1
ð7Þ

the temperature being made dimensionless through

T� ¼
T � T4

T1 � T4

ð8Þ

Combining Eq. (7) into Eq. (3) it can be obtained that

NuH

Nu
0

H

¼ FNuH
�

þ 1
��n1 ð9Þ

Thus, once known the T1 � T4 based Nusselt number

Nu
0

H and the F factor, the effective Nusselt number NuH ,

Table 1

Applicability conditions and constants of the Berkovsky and Polevikov correlation [3]

L=H Pr RaH C n1 n2

0:1 < L=H < 0:5 Pr < 105 RaH < 1013 0.22 0.28 0.09

0:5 < L=H < 1:0 10�3 < Pr < 105 ½Pr=ð0:2 þ PrÞ	RaH L=Hð Þ3 > 103 0.18 0.29 �0.13
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based on the T2 � T3 temperature difference, can be ob-

tained from the non-linear equation (9). Once known the

NuH Nusselt number, the T2 � T3 temperature difference

can be obtained from Eq. (7).

The ratio _QQ0= _QQ0;0 between the effective heat transfer

rate and the heat transfer rate corresponding to the

enclosure without diffusive walls, both per unit depth,

can be obtained as

_QQ0

_QQ00
¼

kfH
T1�T4

L
NuH

FNuHþ1

kfH
T1�T4

L Nu
0

H

¼ FNuH
�

þ 1
�� n1þ1ð Þ ð10Þ

The following limit situations of Eqs. (7), (9) and (10)

can be referred:

T2� � T3� ! 1; NuH=Nu
0

H ! 1; _QQ0= _QQ00 ! 1

if F ! 0 ð11aÞ

and

T2� � T3� ! 0; NuH=Nu
0

H ! 0; _QQ0= _QQ00 ! 0

if F ! þ1 ð11bÞ

F ! 0 corresponds to walls with high thermal conduc-

tivity or very thin walls, thus corresponding to a situation

similar to the rectangular enclosure without diffusive

walls, in terms of temperature distribution and effective

global Nusselt number. F ! þ1 corresponds to walls of

very low thermal conductivity or very thick walls, the

main temperature differences occurring through the dif-

fusive walls which act as insulators, and the temperature

is essentially constant through the fluid within the en-

closure. Thus, when F is moderate or large, an enclosure

with diffusive walls is strongly different from the one

without diffusive walls in terms of temperature distribu-

tion, the effective global Nusselt number and the heat

effectively transferred.

The NuH=Nu
0

H ratio obtained from Eq. (9) is depicted

in Fig. 2 as a function of the Nu
0

H Nusselt number and of

the F factor, using the data of the second row of Table 1

in correlation (1), with C ¼ 0:17. This same correlation

and set of values will be used in what follows. It can be

observed that NuH � Nu
0

H for small values of the F fac-

tor, and NuH < Nu
0

H for moderate and high values of the

F factor, i.e. the ratio NuH=Nu
0

H decreases as F increases.

It is thus observed that the effective Nusselt number is

affected (or even severely affected) by the presence of

diffusive walls.

Some results obtained from Eq. (7) are depicted in

Fig. 3, where the dimensionless temperature difference

T2� � T3� is a function of the Nu
0

H Nusselt number and of

the F factor. It is observed that T2� � T3� � 1 for small

values of the F factor, and that T2� � T3� < 1 for mod-

erate or high values of the F factor, i.e. the dimensionless

temperature difference T2� � T3� decreases as F increases.

It can also be observed that the effective temperature

difference experienced by the fluid within the enclosure is

strongly affected by the diffusive walls for moderate and

high values of F.

The _QQ0= _QQ00 ratio obtained from Eq. (10) is depicted in

Fig. 4, as a function of the Nu
0

H Nusselt number and of

the F factor. It is observed that _QQ0= _QQ00 � 1 for small

values of the F factor, and that _QQ0= _QQ00 < 1 for moderate

and high values of the F factor, the ratio _QQ0= _QQ00 de-

creasing as F increases. It is also observed that the global

effective heat transfer rate through the complete enclo-

sure is also severely affected by the presence of the dif-

fusive walls for moderate and high values of F.

Fig. 2. The ratio NuH=Nu
0

H , obtained from the 1D modeling, as

function of the Nu
0

H Nusselt number for some values of the F

factor.

Fig. 3. The dimensionless effective temperature difference

ðT2 � T3Þ=ðT1 � T4Þ experienced by the fluid within the enclo-

sure, obtained from the 1D modeling, as function of the Nu
0

H

Nusselt number for some values of the F factor.
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3.2. Discussion

The foregoing 1D model is an extremely useful

way to evaluate the effective Nusselt number, the effec-

tive temperature difference and the effective heat flow

transferred through the complete enclosure with diffu-

sive walls, once known the temperature difference

T1 � T4, the F factor and the applicable correlation for

the Nusselt number. The Nusselt number Nu
0

H is easily

calculated from the already known temperature differ-

ence T1 � T4. The effective Nusselt number, NuH , is based

on the a priori unknown maximum temperature differ-

ence experienced by the fluid within the enclosure,

T2 � T3. The main goal of this work is to obtain the ef-

fective global Nusselt number NuH from the easy to

calculate Nu
0

H Nusselt number. It remains to be evalu-

ated if this 1D approach is correct enough to be used for

calculation purposes. The main source of uncertainty

lies on the assumed uniform temperatures at the interior

faces of the enclosure and on the 1D model used. In

order to evaluate the applicability of the procedure, one

needs to solve the complete 2D problem and compare

the results. The solution of the 2D problem needs to be

solved numerically, as explained in Section 4.

It should be noted that the ratio L=H is not relevant

to evaluate the validity of the proposed 1D procedure,

and that the main governing parameter is solely the F

factor. Thus, tests will be conducted for a quadrangular

enclosure ðL=H ¼ 1Þ with diffusive walls, for different

values of the F factor. It remains to be analyzed how the

factor F acts over the temperature distributions along

the vertical solid–fluid interfaces of the enclosure, over

the effective Nusselt number and over the heat effectively

transferred, for several values of other governing di-

mensionless parameters such as the Prandtl and Ray-

leigh numbers.

4. Two-dimensional model

4.1. Modeling

The complete problem under consideration is gov-

erned by the 2D mass, momentum and energy conser-

vation equations in the fluid domain, which are, in the

conservative non-dimensional form, respectively,

ou�
ox�

þ ov�
oy�

¼ 0 ð12Þ

o

ox�
u�u�ð Þ þ o

oy�
v�u�ð Þ ¼ � op�

ox�
þ Pr

o2u�
ox2

�

�
þ o2u�

oy2
�

�

ð13Þ

o

ox�
u�v�ð Þ þ o

oy�
v�v�ð Þ ¼ � op�

oy�
þ Pr

o2v�
ox2

�

�
þ o2v�

oy2
�

�

þ Ra0
HPrT� ð14Þ

o

ox�
u�T�ð Þ þ o

oy�
v�T�ð Þ ¼ o2T�

ox2
�
þ o2T�

oy2
�

ð15Þ

and by the energy conservation equation in the solid

vertical walls

0 ¼ o2T�
ox2

�
þ o2T�

oy2
�

ð16Þ

The original mass, momentum and energy conservation

equations were made dimensionless through the intro-

duction of the non-dimensional variables

x� ¼ x=H ; y� ¼ y=H ð17Þ

u� ¼
u

a=H
; v� ¼

v
a=H

ð18Þ

p� ¼
p þ q4gy

q4 a=Hð Þ2
ð19Þ

The temperature is made dimensionless as given by

Eq. (8), and the Ra0
H Rayleigh number is obtained from

Eq. (2).

4.2. Boundary conditions

The boundary conditions for the foregoing differen-

tial equations are:

Over the solid walls, u� ¼ v� ¼ 0.

Imposed temperatures at the exterior faces of the

solid walls

T�ð � B�; y�Þ ¼ 1; T� L�ð þ B�; y�Þ ¼ 0 ð20Þ

Perfect insulation at the upper and lower faces of the

enclosure

oT�=oy�ð Þðx� ;0Þ ¼ ðoT�=oy�Þðx� ;1Þ ¼ 0 ð21Þ

Fig. 4. The ratio _QQ0= _QQ00, obtained from the 1D modeling, as

function of the Nu
0

H Nusselt number for some values of the F

factor.
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Continuity of the heat flux at the solid–fluid interfaces

oT�
ox�

� �
f

¼ ks

kf

oT�
ox�

� �
s

0; y�ð Þ and L�; y�ð Þ ð22Þ

Continuity of the temperature at the solid–fluid inter-

faces

T�ð Þf ¼ T�ð Þs 0; y�ð Þ and L�; y�ð Þ ð23Þ

4.3. Heat transfer rate

The local heat transfer rate occurring between the hot

and cold walls can be evaluated at any convenient con-

stant x surface. For convenience, it can be evaluated at

the fluid side of the solid–fluid interface located at x� ¼ 0,

where the velocity is null, the global heat transfer rate

(by unit depth) through the complete enclosure being

obtained as

_QQ0 ¼
Z H

0

�
� kf

oT
ox

�
y

dy ð24Þ

Once known the temperature field T 0 from the 2D nu-

merical simulation, for the enclosure without diffusive

walls ðF ! 0Þ, the global Nusselt number Nu
0

H is eval-

uated as

Nu
0

H ¼

R H
0

� kf
oT 0

ox

� �
x¼0

dy

kfH T1 � T4ð Þ=L

¼ L�

Z 1

0

�
� oT 0

�
ox�

�
x�¼0

dy� ð25Þ

where superscript 0 means that the temperature differ-

ence T1 � T4 is felt by the fluid that fills the enclo-

sure without diffusive walls. From the knowledge of the

temperature field T, obtained from the 2D numerical

simulation for the enclosure with diffusive walls, the

effective global Nusselt number NuH is evaluated as

NuH ¼
R H

0
� kf

oT
ox

� �
x¼0

dy

kfH T2 � T3ð Þ=L

¼ L�

T2� � T3�

Z 1

0

�
� oT�

ox�

�
x�¼0

dy� ð26Þ

In this equation, T2� and T3� are the average dimen-

sionless temperatures over the x� ¼ 0 and x� ¼ L� verti-

cal surfaces, respectively, obtained as

T2� ¼
Z 1

0

T�ð Þx�¼0dy� T3� ¼
Z 1

0

T�ð Þx�¼L�
dy� ð27Þ

The ratio NuH=Nu
0

H can be obtained from Eqs. (25) and

(26).

The ratio _QQ0= _QQ00 between the effective heat transfer

rate and the heat transfer rate corresponding to the

enclosure without diffusive walls, both by unit depth,

can be obtained from

_QQ0

_QQ00
¼ kfH T2 � T3ð Þ=L½ 	NuH

kfH T1 � T4ð Þ=L½ 	Nu0

H

¼ NuH

Nu
0

H

T2�ð � T3� Þ ð28Þ

4.4. Numerical modeling

The 2D problem set by the system of differential

equations (12)–(16), subject to the boundary condi-

tions specified by Eqs. (20)–(23), is solved numerically

using the control volume finite difference method, with

staggered grids for the velocity components and the

power-law scheme for the integration of the convection–

diffusion terms [14]. The pressure–velocity link is es-

tablished through the SIMPLER algorithm [14]. Over

the fluid–solid interfaces, the conjugated heat and mass

transfer problem is solved through the use of the har-

monic mean practice for the diffusion coefficients [14,15],

automatically imposing the continuity of the dependent

variables at the interfaces. The discretization equations,

formally the same for all variables, are solved iteratively

with the TDMA algorithm applied several times (typi-

cally twice for all the variables other than the pressure,

and five times for the pressure as well as for the pressure

corrections) over a complete line in each co-ordinate

direction.

The domain is descretized using a 65 � 57 non-uni-

form grid, symmetric relatively to the center of the

enclosure in both x� and y� co-ordinate directions, ex-

panding from the wall to the center with an expansion

factor of 1.08. Four columns of nodes are considered

over each vertical diffusive wall. This grid was selected

after some preliminary tests of asymptotic type were

carried out.

5. Results and comparison

The 1D procedure proposed is tested using a qua-

drangular enclosure filled with air (Pr ¼ 0:73), for sev-

eral values of the F factor and Ra0
H global Rayleigh

number. The Berkovsky and Polevikov correlation (1) is

used at the top border line L=H ¼ 1. To the results ob-

tained with the 1D procedure it has been assigned the

1D subscript, and to those obtained from the complete

2D modeling the 2D subscript. To assess the accuracy of

the 1D procedure, the effective Nusselt number NuH , the

dimensionless effective temperature difference T2� � T3�

and the effective heat transferred _QQ0 obtained from the

complete 2D modeling will be taken as the effective

reference values.

In Fig. 5 it is presented the ratio NuH=Nu
0

H

� �
2D
=

NuH=Nu
0

H

� �
1D

as function of the F factor for different

4222 V.A.F. Costa / International Journal of Heat and Mass Transfer 45 (2002) 4217–4225



values of Ra0
H . Both correlation (1) and the 2D numer-

ical simulation reproduces fairly well the Nu
0

H global

Nusselt number for the enclosure without diffusive walls,

the ratio under analysis being very close to the ratio

ðNuH Þ2D=ðNuH Þ1D. One can conclude from this figure

that the results are, as expected, very good and near unit

for low values of the F factor. As Ra0
H increases, the ratio

also increases reaching its maximum for F � 1. It can be

concluded that, in the worst case, always for F � 1, the

effective Nusselt number obtained following the 1D

approach is 83% of the reference value when Ra0
H ¼ 107,

90% when Ra0
H ¼ 106, 96% when Ra0

H ¼ 105, and 98%

when Ra0
H ¼ 104. For F > 1, the ratio under analysis

approaches the unit as F increases, for any of the con-

sidered Ra0
H values. Over the considered domain, the

effective Nusselt number obtained with the 1D ap-

proach, NuH
� �

1D
, is under-estimated. It is also observed

a very high value of the ratio under analysis when F > 1

for Ra0
H ¼ 104, when F > 10 for Ra0

H ¼ 105 and when

F > 100 for Ra0
H ¼ 106. Such cases are represented by

dashed lines in Fig. 5. This corresponds to specific cases

where the Berkovsky and Polevikov correlation (1) is

not valid, since they correspond to an effective Rayleigh

number RaH less than the lower value admitted by the

applicability conditions of the correlation. Thus, the

very high values of the ratio under analysis are at-

tributed to the use of correlation (1) out of its applica-

tion domain, and are therefore non-valid results. It can

also be observed that the 1D approach gives better re-

sults for lower values of Ra0
H . Moreover, lower values of

Ra0
H lead more easily to lower values of the effective

Rayleigh number RaH for which correlation (1) does not

apply.

In Fig. 6 it is presented the ratio ðT2� � T3� Þ2D=
ðT2� � T3� Þ1D as function of the F factor for some values

of Ra0
H . In this case, a similar behavior to the one found

for the effective Nusselt number can be observed. It has

to be noted that the temperature difference obtained

with the 1D procedure is in the majority of the cases

over-estimated. In the worst case, also always for F � 1,

the effective temperature difference obtained following

the 1D approach is 116% of the reference value when

Ra0
H ¼ 107, 110% when Ra0

H ¼ 106, 104% when Ra0
H ¼

105, and 99% when Ra0
H ¼ 104. For F > 1, the ratio

approaches the unit as F increases, for any of the con-

sidered Ra0
H values. It is observed a very low value of

the ratio under analysis when F > 1 for Ra0
H ¼ 104 and

when F > 10 for Ra0
H ¼ 105, for the same reasons re-

ferred when analyzing Fig. 5, i.e. the existence of effec-

tive Rayleigh numbers RaH for which correlation (1)

does not apply. Such situations are represented by

dashed lines in Fig. 6.

In Fig. 7 it is presented the ratio ð _QQ0= _QQ00Þ2D=
ð _QQ0= _QQ00Þ1D as function of the F factor for different values

Fig. 5. The ratio ðNuH=Nu
0

H Þ2D=ðNuH=Nu
0

H Þ1D as function of

the F factor for some values of the Ra0
H Rayleigh number. Fig. 6. The ratio ðT �

2 � T �
3 Þ2D=ðT �

2 � T �
3 Þ1D as function of the

F factor for some values of the Ra0
H Rayleigh number.

Fig. 7. The ratio ð _QQ0= _QQ00Þ2D=ð _QQ0= _QQ00Þ1D as function of the F

factor for some values of the Ra0
H Rayleigh number.
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of the Ra0
H Rayleigh number. Also here, correlation (1)

and the 2D numerical modeling reproduce very well the

Nu
0

H global Nusselt number for the enclosure without

diffusive walls, thus leading to very good values of the

heat flow by unit depth, and the ratio under analysis is

very close to the ratio ð _QQ0Þ2D=ð _QQ0Þ1D. From a thermal

engineering point of view, this might be the most rele-

vant conclusion, since the main objective is the evalua-

tion the heat effectively transferred through the complete

enclosure with diffusive walls. The behavior of this ratio

is similar to the one found for the effective Nusselt

number. The effective heat transfer evaluated through

the 1D approach is under-estimated for F 6 1, for the

Ra0
H Rayleigh numbers considered, and tends to be over-

estimated for higher values of the F parameter and

Ra0
H P 105. The worst cases for the heat transfer ob-

tained following the 1D approach are always obtained

when F � 1, being: 93% of the reference value when

Ra0
H ¼ 107, 97% when Ra0

H ¼ 106, 98% when Ra0
H ¼ 105,

and 98% when Ra0
H ¼ 104. In all the analyzed cases, it

is observed a very good agreement between the results

obtained with the 1D approach and the reference ones

obtained from the complete 2D numerical simulation.

As referred previously when analyzing Figs. 5 and 6,

there are situations where the proposed 1D approach

is not valid, presented by dashed lines in Fig. 7, due to

the non-applicability of correlation (1) in such condi-

tions.

The temperatures along the vertical surfaces x� ¼ 0

and x� ¼ 1 were assumed as constants in the 1D ap-

proach, and as average values in the post-processing of

the results obtained with the 2D modeling (Eqs. (26)–

(28)). Such assumption leads to a very good agreement

between the 1D and 2D results, for both effective Nus-

selt number and effective heat flow transferred, proving

itself valid for this specific purpose.

6. Conclusions

The results obtained following the proposed 1D ap-

proach are in very good agreement with those obtained

with the complete 2D modeling. Taking the 2D results

as the reference, the worst cases encountered in the

analyzed situations present a deviation of 17% for the

effective Nusselt number, a deviation of 10% for

the effective temperature difference, and a deviation of

7% for the effective heat transfer. This 1D approach is

also an effective way to enlarge the applicability domain

of the usual correlations for the Nusselt number in

rectangular enclosures to a situation for which such

correlations were not obtained, i.e. for enclosures with

diffusive walls.

Analyzed situations were restricted to a fluid with a

Prandtl number of 0.73, and the comparison between

the 1D and 2D results was restricted to a quadrangular

enclosure. However, the 1D model could be extended

also to rectangular enclosures and to other Prandtl

number fluids, once guaranteed the applicability condi-

tions of the available correlations for the Nusselt num-

ber. The Prandtl number is irrelevant to the 1D model,

and the shape factor of the rectangular enclosures is also

of minor relevance, once verified and tested the 1D

model over the quadrangular enclosure and that the

temperatures over the vertical solid–fluid interfaces are

kept nearly constant.

The proposed 1D approach is thus an acceptable way

to model the involved heat transfer through the com-

plete enclosure. It proves to be a very useful tool to help

the thermal engineer to correctly use the available cor-

relations to obtain the effective Nusselt number and the

effective heat transfer in real rectangular enclosures with

diffusive vertical walls.
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